
Learning Type Inference
for

Enhanced Dataflow Analysis
Lukas Seidel
Sedick David Baker Effendi
Xavier Pinho
Konrad Rieck
Brink van der Merwe
Fabian Yamaguchi

Qwiet AI and TU Berlin
Stellenbosch University and Whirly Labs

Qwiet AI
TU Berlin

Stellenbosch University
Qwiet AI, WhirlyLabs, and Stellenbosch University

28th European Symposium on Research in Computer Security (ESORICS), 2023



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Our Goal

Practical Application of LLMs 
in Security Research
… Specifically, Static Analysis

2



Learning Type Inference for Enhanced Dataflow Analysis

Motivation

3

Type information affects the 
precision of downstream static 
analysis, with a knock-on effect…
Call graphs, field accesses, taint 
tracking, etc.

This effect is made worse when we 
perform partial program analysis1.

Why type inference?

1 We do not see the whole program, e.g., code snippets, 
dependencies are excluded.



Learning Type Inference for Enhanced Dataflow Analysis

Motivation
Why large language models?

If we have the whole program, we 
see type definitions and object 
instantiations.

If we don’t, we may need heuristics.

Where type annotations are 
excluded, developers may use 
descriptive identifiers.

4



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

How to reason about data like a human

From this snippet alone, can we identify the 
attack surface and sensitive sinks?

● req refers to some HTTP request body
● No library in particular
● reads a payload from req.body.params.

● documentClient is fetched from some 
global database module

● appears to be a DynamoDB 
DocumentClient object

○ query is invoked from it.

5

Fig. 1: JavaScript request handler with a query to a database.



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

How to reason about data like a human machine

req = parameter of type any

documentClient = field access of type any

We do not see the internals of db.js, so we 
cannot tag documentClient using type 
information.

We could use a code heuristic for the handler:
const handler = ($SOURCE, res)

But how many cases do we need to consider? 
How flexible is our matcher?

6

Fig. 1: JavaScript request handler with a query to a database.



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Can machines reason like humans?

Code-LLMs appear to come 
close…

7



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

What should the machine see?

8

Can we just give the source code? 

TypeBert achieved pretty decent results with this and a 
large GitHub database, but falls short on user-defined 
types… 

GraphCodeBert-ManyTypes4TypeScript achieved better 
results for a bigger model & dataset.

Can we do better?

● Use LLM foundation model pretrained on code 
and documentation (CodeT5+)

● Integrate tokens into the code to precisely tag 
variables that need inference

=> usage slice
● No token classification head: encoder-decoder 

architecture

Fig. 2: A usage slice for documentClient.

Fig. 3: Annotated code with tokens on target variables.



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Implementation Target

The open-source static analysis platform Joern:

● Language agnostic
● Supports partial programs
● Rich intermediate code representation for number 

of downstream tasks

Joern uses the code property graph (CPG) IR. 

The CPG is the combination of abstract syntax, 
control-flow, and data-dependence information.

We perform usage slicing on the CPG.

9



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

The Architecture

10

Fig. 3: End-to-end pipeline of Joern’s code property graph construction with the JoernTI neural type inference 
server.



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Compared neural inference models:

● LambdaNet
● TypeBert
● GraphCodeBert-MT4TS

Datasets

● LambdaNet (LN)
● ManyTypes4TypeScript (MT4TS)

Excluding: Function and void types, 
and situations where constructors are 
present.

11

Table 1: Performance comparison of ML-based on LambdaNet dataset. Size in 
number of trainable parameters.

Table 2: Performance comparison on the ManyTypes4TypeScript dataset.

Performance & Evaluation



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Manual Labelling & Real-World Testing
Does the model generalize outside of 
benchmarks?

1093 type inferences from 10 open-source 
JavaScript projects are manually labelled.

Hardware: M1 MacBook Pro 16GB RAM.

12

documentClient DocumentClient

req NextApiRequest

params Record

err ecma.Error

data DocumentClient.QueryInpu
t



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Querying the Resulting Graph

The additional types allow us to keep and 
make use of CPG queries that match 
type information.

Queries of this kind are superior to 
code-matching, as they are robust to 
syntactic differences.

Also allows us to provide meaningful 
feedback to the user with API or library 
specific recommendations.

13

Fig. 4: CPG query tracking flow from an HTTP request parameter to a 
DocumentClient query call.

_________________________________________________________________________________
| nodeType   | tracked                        | lineNumber| method  | file       |
|================================================================================|
| Call       | const params = req.body.params | 5         | handler | handler.js |
| Identifier | const params = req.body.params | 5         | handler | handler.js |
| Identifier | documentClient.query(params... | 6         | handler | handler.js |
| Identifier | documentClient.query(params... | 6         | handler | handler.js |
| Call       | documentClient.query(params... | 6         | handler | handler.js |



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Conclusion

● CodeTIDAL5 offers SOTA type inference, especially for 
user-defined types

● JoernTI integrates this into practical static analysis 
workflows on developer hardware

● Access to more type information during downstream 
static analysis such as data-flow analysis

● Ready-to-use integration of LLM to assist in real-world 
security analysis

Future Work

● Extend to multiple languages
● Improve detection of incorrect/invalid inferences

@pr0me

14

@SDBakerEffendi



Backup Slides

15



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Machine Learning Model

CodeTIDAL5

Saleforce's CodeT5 220M parameter model 
base.

Features to learn

Semantic relationships, i.e, variable naming 
conventions and class names.

Motivation

CodeT5 achieves SOTA for NLP-PL tasks where 
understanding semantics are required.

16



L Seidel, SD Baker Effendi, X Pinho, K Rieck, B vd Merwe, and F Yamaguchi

Learning Type Inference for Enhanced Dataflow Analysis | ESORICS’23

Mitigating Errors & Hallucination

Can we detect invalid type inferences?

The user has the ability to specify TypeScript 
declaration files to compare the usage slice 
against for inconsistent properties. These are 
filtered out for fewer false positives.

Example:

lib.es5.d.ts tells us String does not have 
a .body property, so req should not be a 
String (in most cases)

Do we infer everything?

No, as not everything has a usage (or needs 
it).

The user can specify the minimum number of 
usages a variable requires to be sent for 
inference. This increases the known context and 
may boost accuracy.

If, for example, a constructor is in the file, 
Joern’s type propagation would likely solve the 
missing type information for that variable.

17


